## Polytec TC 423-2



### **Properties**

Polytec TC 423-2 is a pasty, two component, highly thermally conductive, electrically insulating epoxy adhesive curing at room temperature.

It has an excellent adhesion to glass, metal, ceramic, FR4 and most plastics.

Polytec TC 423-2 is used in various thermal management applications, especially for potting of large volumes in electrical and power engineering.

The material can be applied via dispensing or manual application.



### **Processing**

- TC 423-2 Part A must be thoroughly stirred before mixing!
- For two-component products the components A and B should be mixed carefully within the specified mixing ratio.
- For filled products both components should be homogenized carefully prior mixing, in order to prevent a possible settling of the filler.
- Processing should be carried out rapidly after mixing the components; as an indication the pot life can be used.
- Surfaces should be clean, thus free of dirt, grease, oil, dust or process chemicals.
- Please take notice of respective minimum curing temperature and time.
- For Safety information please refer to the respective Material Safety Data Sheet.

Polytec TC 423-2
Thermally Conductive Adhesive
Technical Data



# Polytec TC 423-2

| Properties in uncured state                 | Method    | Unit   | Technical Data      |
|---------------------------------------------|-----------|--------|---------------------|
| Chemical basis                              | -         | -      | Ероху               |
| No. of components                           | -         | -      | 2                   |
| Mixing ratio (weight)                       | -         | -      | 100:1.8             |
| Pot life at 23°C                            | TM 702    | min    | 30                  |
| Storage Stability at 23°C                   | TM 701    | months | 12                  |
| Consistency                                 | TM 101    | -      | Tough-flowing paste |
| Density Mix                                 | TM 201.2  | g/cm³  | 3.1                 |
| Density Part A                              | TM 201.2  | g/cm³  | 3.2                 |
| Density Part B                              | TM 201.2  | g/cm³  | 1.0                 |
| Max. particle size                          | -         | μm     | <200                |
| Viscosity Mix 10 s <sup>-1</sup> at 23°C    | TM 202.24 | mPa∙s  | 87 000              |
| Viscosity Part A 10 s <sup>-1</sup> at 23°C | TM 202.22 | mPa∙s  | 180 000             |
| Viscosity Part B 84 s <sup>-1</sup> at 23°C | TM 202.1  | mPa∙s  | 30                  |

| Properties in cured* state                     | Method         | Unit  | Technical Data |
|------------------------------------------------|----------------|-------|----------------|
| Color                                          | TM 101         | -     | Blue           |
| Hardness (Shore D)                             | DIN EN ISO 868 | ÷     | >90            |
| Temperature resistance continuous              | TM 302         | °C    | -55 / +160     |
| Temperature resistance short term              | TM 302         | °C    | -55 / +260     |
| Degradation Temperature                        | TM 302         | °C    | +350           |
| Glass Transition Temperature (T <sub>g</sub> ) | TM 501         | °C    | ca. 90         |
| Thermal conductivity                           | TM 503.3       | W/m·K | 3.1            |
| Specific volume resistivity at 250V            | TM 402.1       | Ω·cm  | > 1012         |
| Dielectric strength                            | TM 402.1       | kV/mm | ≥ 10           |
| Tensile strength                               | TM 605         | N/mm² | 50             |
| Lap sheer strength (Al/Al)                     | TM 604         | N/mm² | 14             |
| Elongation at break                            | TM 605         | %     | 0.5            |

<sup>\*</sup>The above data has been determined with samples cured at 80°C and 120°C for 1 hour for both temperatures. Please notice, by varying the curing temperature these properties can be influenced to some extend.



## Polytec TC 423-2

| Curing*                    | Method | Unit | Technical Data |
|----------------------------|--------|------|----------------|
| Minimum curing temperature |        | °C   | 15             |
| Curing time at 23°C        |        | h    | 24             |
| Curing time at 100°C       |        | min  | 60             |
| Curing time at 120°C       |        | min  | 30             |

<sup>\*</sup>Curing temperatures refer to the temperature in the respective bond line. When choosing the respective curing conditions, the time needed to heat the substrate has to be considered. Depending on the type of heat source (convection oven, hot stamp, heating plate) the heat input may vary.

### Standard pack sizes:

250 g

**Customized Packaging** 

#### Please note:

The information listed above is typical data based on tests and is believed to be accurate. Polytec PT makes no warranties (expressed or implied) as to their accuracy. The data listed above does not constitute specifications. The processing (particularly the curing conditions) of the material, the process control, and the variety of different applications at various customers are not under Polytec PT's control. Therefore, Polytec PT will not be liable for concrete results in any specific application or in any connection with the use of this product. The curing conditions have a major effect on the properties of the cured material. Therefore, it is highly recommended to keep the curing schedule – once established - under tight control. With the release of this data sheet all former data sheets will be null and void.

Subject to alteration.

Polytec PT GmbH
Polymere Technologien

Polytec PT GmbH
Polymere Technologien
plant Maxdorf

Ettlinger Straße 30 76307 Karlsbad Germany Phone +49 (0)7202 706-3500 Bahnhofstraße 1 67133 Maxdorf Germany

info-pt@bostik.com www.polytec-pt.de info-pt@bostik.com www.polytec-pt.de