

Polytec EP 601-T-frozen

Properties

Polytec EP 601-T-frozen is a non-flowing, thixotropic, single-component, pre-mixed frozen epoxy adhesive.

Polytec EP 601-T-frozen is designed for applications in optics, fiber optics, optoelectronics, medical and semiconductor technology.

Polytec EP 601-T-frozen has an excellent adhesion to glass, PMMA, quartz, silicon, ceramic, metals, FR 4, wood and most plastics.

The material can be applied via dispensing, jet-dispensing and manual application.

Processing

- The cooling during transport is assured by dry ice (-78 °C) and a temperature indicator.
- Use insulated gloves when touching any component of the packaging.
- The storage temperature of frozen adhesives should not exceed -40 °C.
- The cartridges should be opened only when they have been brought to room temperature (thawing curve see page 3).
- Store cartridges in vertical position while thawing (top down).
- Do not accelerate the thawing by hand heat or warm water (risk of air inclusions)
- Please remove condensed water before opening.
- Surfaces should be clean, thus free of dirt, grease, oil, dust or process chemicals.
- Please notice respective minimum curing temperature and time.
- For Safety information please refer to the respective Material Safety Data Sheet.

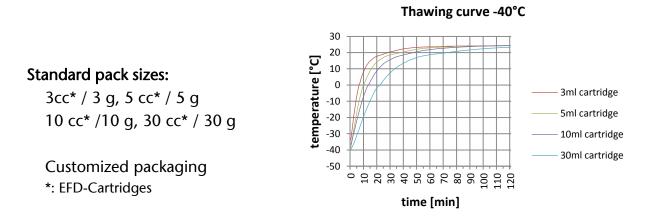
Polytec EP 601-T-frozen Unfilled Epoxy Adhesive Technical Data

Polytec EP 601-T-frozen

Operation of the second secon

Properties in uncured state	Method	Unit	Technical Data
Chemical basis	-	-	Ероху
No. of components	-	-	1
Mixing ratio (weight)	-	-	-
Mixing ratio (volume)	-	-	-
Pot life at 23°C after thawing	TM 702	h	4
Storage Stability at -40°C	TM 701	months	12
Consistency	TM 101	-	Thixotropic paste
Density Mix	TM 201.2	g/cm³	1.05
Density A-Part	TM 201.2	g/cm³	-
Density B-Part	TM 201.2	g/cm³	-
Viscosity Mix 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	3 000
Viscosity A-Part 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	-
Viscosity B-Part 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	-

Properties in cured* state	Method	Unit	Technical Data
Color	TM 101	-	translucent
Hardness (Shore D)	DIN EN ISO 868	-	80
Temperature resistance continuous	TM 302	°C	-55 / +125
Temperature resistance short term	TM 302	°C	-55 / +200
Degradation Temperature	TM 302	°C	+280
Glass Transition Temperature (T _g)	TM 501	°C	>65
Coefficient of thermal expansion (<tg)< td=""><td>ISO 11359-2</td><td>ppm</td><td>-</td></tg)<>	ISO 11359-2	ppm	-
Coefficient of thermal expansion (>Tg)	ISO 11359-2	ppm	-
Thermal conductivity	-	W/m⋅K	-
Elasticity modulus	TM 605	N/mm²	3 500
Tensile Strength	TM 605	N/mm²	65
Lap shear strength (Al/Al)	TM 604	N/mm²	37
Elongation at break	TM 605	%	2.9
Water absorption 24 h, 23°C	TM 301	%	0.2
Refractive index	-	-	-


*The above data has been determined with samples cured at 150°C. Please notice, by varying the curing temperature these properties can be influenced to some extend.

Polytec EP 601-T-frozen

Polytec PT Polymere Technologien

Curing*	Method	Unit	Technical Data
Minimum curing temperature		°C	15
Curing time at 23°C		h	16
Curing time at 80°C		min	90
Curing time at 100°C		min	40
Curing time at 120°C		min	-
Curing time at 150°C		min	12
Curing time at 180°C		S	-

*Curing temperatures refer to the temperature in the respective bond line. When choosing the respective curing conditions, the time needed to heat the substrate has to be considered. Depending on the type of heat source (convection oven, hot stamp, heating plate) the heat input may vary.

Please note:

The above listed information are typical data based on tests and are believed to be accurate. Polytec PT makes no warranties (expressed or implied) as to their accuracy. The above listed data do not constitute specifications. The processing (in particular the cure conditions) of the material, the process control and the variety of different applications at various customers are not under Polytec PT's control. Therefore Polytec PT will not be liable for concrete results in any specific application or in any connection with the use of this product. In particular the cure conditions do have a major effect on the properties of the cured material. Therefore it is highly recommended to keep the cure schedule – once established - under tight control. With the release of this data sheet all former data sheets will be null and void.

Subject to alteration.

Polytec PT GmbH Polymere Technologien Polytec-Platz 1-7 76337 Waldbronn Germany Tel. +49 (0) 7243 604-4000 Fax +49 (0) 7243 604-4200 info@polytec-pt.de http://www.polytec-pt.de Polytec France S.A.S. TECHNOSUD II Bâtiment A 99, Rue Pierre Semard 92320 Châtillon - France Phone. +33 (0)1 49 65 69 00 Fax +33 (0)1 57 19 59 60 info@polytec.fr http://www.polytec-pt.com Polytec South-East Asia Pte Ltd Blk 4010 Ang Mo Kio Ave 10 #06-06 Techplace I Singapore 569626 Tel. +65 6451 0886 Fax +65 6451 0822 info@polytec-sea.com http://www.polytec-pt.com